DISTRITO UNIVERSITARIO DE CANARIAS Junio 2008 MATEMÁTICAS II.

- Se debe de responder a una pregunta de cada bloque
- Elegir UNA y SOLO UNA opción (A o B) en cada bloque. Si se resuelven las dos opciones de un mismo bloque el tribunal podrá ANULAR EL BLOQUE
- En el desarrollo de cada problema, detalle y explique los procedimientos empleados para solucionarlo. Se califica todo
- La duración del examen será de 90 minutos
- No olvide pegar las etiquetas antes de entregar el examen

Examen 1

Bloque 1 (Elegir SÓLO UNA opción; en caso contrario se podrá anular el boque)

1.A.- Para la función dada por: $f(x) = \begin{cases} (\alpha x^2 + \beta x + \gamma) \cdot e^{-x+I} & si \quad x > I \\ sen(x-I) & si \quad x \le I \end{cases}$ Encontrar los

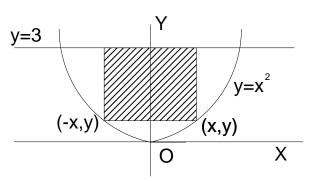
valores de α, β y γ que hacen que f(x) sea continua, y admita primera y segunda derivada en el punto **x** = **1** [2'5 puntos]

- **1.B-** Dada la función $f(x) = ax^3 + bx^2 + cx + d$ determinar los valores de **a**, **b**, **c** y **d** para que se cumplan las siguientes condiciones: 1°) Que la recta tangente a la gráfica de **f** en el punto
- (0, 2) sea paralela a la recta y + 1 = 0, $y = 2^{\circ}$) Que la recta x y 2 = 0 sea tangente a la gráfica de f en el punto x = 1 [2'5 puntos]

Bloque 2 (Elegir SÓLO UNA opción; en caso contrario se podrá anular el boque)

2.A.- Calcular el valor de a para que la región plana encerrada entre la parábola $y = x^2 y$ la recta y = a sea el doble del área de la región limitada por dicha parábola y la recta y = 1 [2'5 puntos]

2.B.- .- Considérese el recinto limitado por la curva $y = x^2$ y la recta y = 3



De entre los rectángulos situados como en la figura anterior, determinan el que tiene área máxima [2'5 puntos]

Bloque 3 (Elegir SÓLO UNA opción; en caso contrario se podrá anular el boque)

 ${f 3.A-}$ Estudiar el siguiente sistema de ecuaciones según los valores del parámetro ${f lpha}$ y

resolverlos en los casos posibles
$$\begin{cases} 6x + 2y + 2z = 6 \\ \alpha x + 2y + z = \alpha \end{cases}$$
 [2'5 puntos]
$$5x + 3y + \alpha z = 5$$

- i) Razonar para que valores de k la matriz B^t.A^t tiene inversa [1'5 puntos]
- ii) Resolver la ecuación $(AB)^t = I$, para k = 0, siendo I la matriz identidad [1 punto]

Bloque 4 (Elegir SÓLO UNA opción; en caso contrario se podrá anular el boque)

4.A.- Dadas las rectas
$$r \equiv \begin{cases} x - y + 2 = 0 \\ z = -1 \end{cases}$$
 $y \quad s \equiv \begin{cases} x = 2 \\ y - z - 5 = 0 \end{cases}$

- i) Determinar su posición relativa [1'5 puntos]
- ii) En caso de cortarse, determinar el ángulo que forman y el punto de corte [1 punto

4.B.- Se consideran la recta :
$$r \equiv \begin{cases} x=2+t \\ y=2+2t \end{cases}$$
 , el plano $\pi \equiv 2x-4y-2z=0$ y el punto $z=3+3t$

P(1, 1, 1). Se pide:

- i) Determinar la ecuación del plano π_I que pasa por el punto **P** y es paralelo al plano π [1'25 puntos]
- i) Determinar la ecuación general del plano π_2 que contiene a la recta ${\bf r}$ y pasa por el punto ${\bf P}$ [1'25 puntos]